If you don't know modular arithmetic then you can use little Fermat and the following
$\ \ p\mid n^p\!-\!n\mid n^{31}\!-\!n\,$ by $\,n^{\large \color{#c00}{p-1}}\!-\!1\mid n^{\color{#c00}{30}}\!-\!1\,$ by $\,\color{#c00}{p\!-\!1\mid 30}\,$ for all $\, p\mid 14322=2\cdot3\cdot7\cdot11\cdot 31$
Otherwise, the easy direction $\,\color{#90f}{(\Leftarrow)}\,$ of the following theorem applies.
Theorem $ $ (Korselt's Carmichael Criterion) $\ $ For $\rm\:1 < e,n\in \Bbb N\:$ we have
$$\rm \forall\, a\in\Bbb Z\!:\ n\mid a^e\!-a\ \iff\ n\ \ is\ \ squarefree,\ \ and \ \ \color{#c00}{p\!-\!1\mid e\!-\!1}\ \, for\ all \ primes\ \ p\mid n\quad $$
Proof $\ \ \color{#90f}{(\Leftarrow)}\ \ $ Since a squarefree natural divides another natural iff all its
prime factors do, we need only show $\rm\: p\mid a^e\!-\!a\:$ for each prime $\rm\:p\mid n,\:$ or that $\rm\:a \not\equiv 0\:\Rightarrow\: a^{e-1}\equiv 1\ \ ( mod\ p),\:$ which, since $\rm\:p\!-\!1\mid e\!-1,\:$ follows from $\rm\:a \not\equiv 0\:\Rightarrow\: \color{#c00}{a^{p-1} \equiv 1}\ \ ( mod\ p)\:$ by little Fermat, i.e.
$$\rm \color{#c00}{e\!-\!1 = (p\!-\!1)}k\ \Rightarrow\ a^{\large e-1} \equiv (\color{#c00}{a^{\large p-1}})^{\large k}\equiv \color{#c00}1^{\large k}\equiv 1\!\!\!\pmod p \qquad\qquad $$
$(\Rightarrow)\ \ $ Given that $\rm\: n\mid a^e\!-\!a\:$ for all $\rm\:a\in\Bbb Z,\:$ we must show
$$\rm (1)\ \ n\,\ is\ squarefree,\quad and\quad (2)\ \ p\mid n\:\Rightarrow\: p\!-\!1\mid e\!-\!1$$
$(1)\ \ $ If $\rm\,n\,$ isn't squarefree then
$\rm\,1\neq \color{#0a0}{a^2}\!\mid n\mid \color{#0a0}{a^e}\!-\!a \Rightarrow\: a^2\mid a\:\Rightarrow\!\Leftarrow$ $\rm\: (note\ \ e>1\: \Rightarrow\: \color{#0a0}{a^2\mid a^e})$
$(2)\ \ $ Let $\rm\ a\ $ be a generator of the multiplicative group of $\rm\:\Bbb Z/p.\:$
Thus $\rm\ a\ $ has order $\rm\:p\!-\!1.\:$ Now $\rm\:p\mid n\mid a\,(a^{e-1}\!-\!1)\:$ but $\rm\:p\nmid a,\:$ thus $\rm\: a^{e-1}\!\equiv 1\,\ ( mod\ p),\:$ therefore $\rm\:e\!-\!1\:$ must be divisible by $\rm\:p\!-\!1,\:$
the order of $\rm\,\ a\,\ (mod\ p)$.