Let $k$ be a nonnegative integer.
Contour integration shows that $$ \sum_{n=1}^{\infty}\frac{\sin (n)}{n^{2k-1}} = - \frac{1}{2} \, \Im\, \operatorname{Res} \left[\frac{\pi \left(\cot (\pi z)-\color{red}{i} \right)e^{iz}}{z^{2k-1}},0 \right]$$
and
$$\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{2k}} = - \frac{1}{2} \, \Re \, \operatorname{Res} \left[\frac{\pi \left(\cot (\pi z)-\color{red}{i} \right)e^{iz}}{z^{2k}},0 \right].$$
See my previous answer here for an explanation of why we use $\cot(\pi z)-i$ and not just $\cot(\pi z)$.
Basically it has to do with the fact that the magnitude of $e^{iz}$ is unbounded in the lower half-plane.
At the origin, we have the Laurent series expansion $$ \begin{align} \pi \left(\cot(\pi z)-i \right)e^{iz} &=\small \left(\frac{1}{z}- i \pi - 2\zeta(2)z -2 \zeta(4) x^{3} + O(z^{5}) \right) \left( 1+iz- \frac{z^{2}}{2!}- \frac{iz^{3}}{3!} + \frac{z^{4}}{4!} + O(z^{5}) \right) \\ & = \small \frac{1}{z} + i \left(1-\pi \right) + \left(- \frac{1}{2!} +\pi - 2\zeta(2) \right)z + i \left(- \frac{1}{3!} + \frac{\pi}{2!} -2 \zeta(2) \right)z^{2} \\ &+ \small \left(\frac{1}{4!} -\frac{\pi}{3!} + \frac{2 \zeta(2)}{2!} - 2 \zeta(4) \right)z^{3} + O(z^{4}) . \end{align}$$
Therefore, $$\sum_{n=1}^{\infty} \frac{\sin (n)}{n} = \frac{\pi -1}{2}, $$
$$\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{2}} = \frac{1}{4} - \frac{\pi}{2} + \zeta(2), $$
$$\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{3}} = \frac{1}{12} - \frac{\pi}{4} + \zeta(2), $$
$$\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{4}} = -\frac{1}{48} + \frac{\pi}{12} - \frac{\zeta(2)}{2} + \zeta(4), $$ and so on.