Let $\,x = 11\!+\!7i,\,y = 18\!-\!i.\,$ Then $\,d\mid x,y\,\Rightarrow\,d\mid \overbrace{x\bar x}^{170},\overbrace{y\bar y}^{325}\,\Rightarrow\,d\mid(170,325)=5$
But neither prime factor of $\,5 = (2\!-\!i)(2\!+\!i)\,$ divides both $\,x,y\,$ since by the Lemma
$\qquad \ \begin{align}5&\,\nmid\ 18 - 1(2)\\ \Rightarrow\ i\!-\!2&\,\nmid\, 18 - 1\,(i)\end{align}\qquad $ and $\qquad\, \begin{align}5&\,\nmid\, 11 + 7(-2)\\ \Rightarrow\ i\!+\!2&\,\nmid\, 11 + 7\,( i)\end{align}$
Lemma $\ i\!-\!2\mid a\!+\!bi \iff 5\mid a\!+\!b(2)\,\ $ and $\,\ i\!+\!2\mid a\!+\!bi\iff 5\mid a\!+\!b(-2),\ $ because
$\ {\rm mod}\,\ \color{}{i\!-\!2}\!:\ \color{#c00}{i\equiv 2}\,\Rightarrow\, a\!+\!b\,\color{#c00}i\equiv a\!+\!b(\color{#c00}2),\ $ and $\ i\!-\!2\mid n\iff 5\mid n(i\!+\!2)\iff 5\mid n$
Remark $\ $ Generally we can use module normal forms (Hermite) to test ideal membership. By this Lemma we know that the ideal $\,(i\!-\!2) = (5,i\!-\!2) = 5\,\Bbb Z + (i\!-\!2)\Bbb Z\,$ by $\,5\mid N(i\!-\!2),\ N = $ norm. Just as in linear algebra, it is easy to test membership when the subspace basis is triangularized. Here it amounts to modding out first by $\,i\!-\!2\,$ (i.e. replacing $\,i\,$ by $2)\,$ then modding out by $\,5.$
Alternatively we can use the Euclidean algorithm.
Note $\ d\mid 18\!-\!i,11\!+\!7i\,\Rightarrow\, d\mid 18\!-\!i-(11\!+\!7i) = 7\!-\!8i,$
thus $\ d\mid 11\!+\!7i-i(7\!-\!8i) = 3\,\Rightarrow\, d\mid 3(6)-(18\!-\!i) = i\,\Rightarrow d\mid i(-i) = 1$
Remark $\ $ Unwinding gives Bezout $\ (6-6i)(11+7i) + (i-6)(18-i) = 1$