Here is what you get from the algorithm in the Schaum's Outline, Schaum's Outline of Theory and Problems of Linear Algebra, by Lipschutz and Lipson (third edition), as in the answer by el.Salvador.
$$ P^T H P = D $$
$$ Q^T D Q = H $$
$$ H = \left(
\begin{array}{rrrr}
8 & 11 & 4 & 3 \\
11 & 12 & 4 & 7 \\
4 & 4 & 7 & 12 \\
3 & 7 & 12 & 17 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrr}
1 & - \frac{ 11 }{ 8 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrr}
1 & - \frac{ 11 }{ 8 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrr}
1 & \frac{ 11 }{ 8 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrr}
8 & 0 & 4 & 3 \\
0 & - \frac{ 25 }{ 8 } & - \frac{ 3 }{ 2 } & \frac{ 23 }{ 8 } \\
4 & - \frac{ 3 }{ 2 } & 7 & 12 \\
3 & \frac{ 23 }{ 8 } & 12 & 17 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrr}
1 & 0 & - \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrr}
1 & - \frac{ 11 }{ 8 } & - \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrr}
1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrr}
8 & 0 & 0 & 3 \\
0 & - \frac{ 25 }{ 8 } & - \frac{ 3 }{ 2 } & \frac{ 23 }{ 8 } \\
0 & - \frac{ 3 }{ 2 } & 5 & \frac{ 21 }{ 2 } \\
3 & \frac{ 23 }{ 8 } & \frac{ 21 }{ 2 } & 17 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & - \frac{ 3 }{ 8 } \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrr}
1 & - \frac{ 11 }{ 8 } & - \frac{ 1 }{ 2 } & - \frac{ 3 }{ 8 } \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrr}
1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & - \frac{ 25 }{ 8 } & - \frac{ 3 }{ 2 } & \frac{ 23 }{ 8 } \\
0 & - \frac{ 3 }{ 2 } & 5 & \frac{ 21 }{ 2 } \\
0 & \frac{ 23 }{ 8 } & \frac{ 21 }{ 2 } & \frac{ 127 }{ 8 } \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & - \frac{ 12 }{ 25 } & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrr}
1 & - \frac{ 11 }{ 8 } & \frac{ 4 }{ 25 } & - \frac{ 3 }{ 8 } \\
0 & 1 & - \frac{ 12 }{ 25 } & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrr}
1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\
0 & 1 & \frac{ 12 }{ 25 } & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & - \frac{ 25 }{ 8 } & 0 & \frac{ 23 }{ 8 } \\
0 & 0 & \frac{ 143 }{ 25 } & \frac{ 228 }{ 25 } \\
0 & \frac{ 23 }{ 8 } & \frac{ 228 }{ 25 } & \frac{ 127 }{ 8 } \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & \frac{ 23 }{ 25 } \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrr}
1 & - \frac{ 11 }{ 8 } & \frac{ 4 }{ 25 } & - \frac{ 41 }{ 25 } \\
0 & 1 & - \frac{ 12 }{ 25 } & \frac{ 23 }{ 25 } \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrr}
1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\
0 & 1 & \frac{ 12 }{ 25 } & - \frac{ 23 }{ 25 } \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & - \frac{ 25 }{ 8 } & 0 & 0 \\
0 & 0 & \frac{ 143 }{ 25 } & \frac{ 228 }{ 25 } \\
0 & 0 & \frac{ 228 }{ 25 } & \frac{ 463 }{ 25 } \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & - \frac{ 228 }{ 143 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrr}
1 & - \frac{ 11 }{ 8 } & \frac{ 4 }{ 25 } & - \frac{ 271 }{ 143 } \\
0 & 1 & - \frac{ 12 }{ 25 } & \frac{ 241 }{ 143 } \\
0 & 0 & 1 & - \frac{ 228 }{ 143 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrr}
1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\
0 & 1 & \frac{ 12 }{ 25 } & - \frac{ 23 }{ 25 } \\
0 & 0 & 1 & \frac{ 228 }{ 143 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & - \frac{ 25 }{ 8 } & 0 & 0 \\
0 & 0 & \frac{ 143 }{ 25 } & 0 \\
0 & 0 & 0 & \frac{ 569 }{ 143 } \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
- \frac{ 11 }{ 8 } & 1 & 0 & 0 \\
\frac{ 4 }{ 25 } & - \frac{ 12 }{ 25 } & 1 & 0 \\
- \frac{ 271 }{ 143 } & \frac{ 241 }{ 143 } & - \frac{ 228 }{ 143 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
8 & 11 & 4 & 3 \\
11 & 12 & 4 & 7 \\
4 & 4 & 7 & 12 \\
3 & 7 & 12 & 17 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & - \frac{ 11 }{ 8 } & \frac{ 4 }{ 25 } & - \frac{ 271 }{ 143 } \\
0 & 1 & - \frac{ 12 }{ 25 } & \frac{ 241 }{ 143 } \\
0 & 0 & 1 & - \frac{ 228 }{ 143 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & - \frac{ 25 }{ 8 } & 0 & 0 \\
0 & 0 & \frac{ 143 }{ 25 } & 0 \\
0 & 0 & 0 & \frac{ 569 }{ 143 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
\frac{ 11 }{ 8 } & 1 & 0 & 0 \\
\frac{ 1 }{ 2 } & \frac{ 12 }{ 25 } & 1 & 0 \\
\frac{ 3 }{ 8 } & - \frac{ 23 }{ 25 } & \frac{ 228 }{ 143 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & - \frac{ 25 }{ 8 } & 0 & 0 \\
0 & 0 & \frac{ 143 }{ 25 } & 0 \\
0 & 0 & 0 & \frac{ 569 }{ 143 } \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & \frac{ 11 }{ 8 } & \frac{ 1 }{ 2 } & \frac{ 3 }{ 8 } \\
0 & 1 & \frac{ 12 }{ 25 } & - \frac{ 23 }{ 25 } \\
0 & 0 & 1 & \frac{ 228 }{ 143 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
8 & 11 & 4 & 3 \\
11 & 12 & 4 & 7 \\
4 & 4 & 7 & 12 \\
3 & 7 & 12 & 17 \\
\end{array}
\right)
$$