Consider the following:
$$\begin{align}
\frac{1}{n!}\sum_{k=1}^{n}\frac{{n\brack k}}{k+1}
&\stackrel{\color{red}{[1]}}=\frac{1}{n!}\sum_{k=0}^{n}\frac{{n\brack k}}{k+1}\\
&=\frac{1}{n!}\sum_{k=0}^{n}{n\brack k}\int_{0}^{1}x^k\,\mathrm{d}x\\
&=\frac{1}{n!}\int_{0}^{1}\left(\sum_{k=0}^{n}{n\brack k}x^k\right)\,\mathrm{d}x\\
&\stackrel{\color{red}{[2]}}=\frac{1}{n!}\int_{0}^{1}(x)^{(n)}\,\mathrm{d}x\\
&=\frac{1}{n!}\int_{0}^{1}\frac{\Gamma{(x+n)}}{\Gamma{(x)}}\,\mathrm{d}x\\
&=\frac{1}{n}\int_{0}^{1}\frac{\Gamma{(x+n)}}{\Gamma{(x)}\,\Gamma{(n)}}\,\mathrm{d}x\\
&=\frac{1}{n}\int_{0}^{1}\frac{1}{\operatorname{B}{(x,n)}}\,\mathrm{d}x\\
&\stackrel{\color{red}{[3]}}\sim\frac{1}{n}\int_{0}^{1}\frac{1}{\Gamma{(x)}\,n^{-x}}\,\mathrm{d}x\\
&=\int_{0}^{1}\frac{n^{x-1}}{\Gamma{(x)}}\,\mathrm{d}x\\
&\approx\int_{0}^{1}x\,n^{x-1}\,\mathrm{d}x\\
&=\frac{n\ln{n}-n+1}{n\ln^2{n}}\\
&=\frac{1}{\ln{n}}+\frac{\frac{1}{n}-1}{\ln^2{n}}
\end{align}$$
Notes:
$\color{red}{[1]}\;\;\;$ For all natural numbers $n>0$, the unsigned Stirling numbers of the first kind satisfy the condition ${n\brack 0}=0$.
$\color{red}{[2]}\;\;\;$ The unsigned Stirling numbers of the first kind arise as coefficients of the rising factorial:
$$(x)^{(n)}=x(x+1)\cdots(x+n-1)=\sum_{k=0}^{n}{n\brack k}x^k.$$
$\color{red}{[3]}\;\;\;$ For large $n$ ($x$ is fixed), Stirling's appproximation gives the asymptotic formula
$$\operatorname{B}{(x,n)}\sim \Gamma{(x)}\,n^{-x}.$$