General Bezout Identity $\,\ h = ax\! +\! by\,$ for some $\,x,y\in\Bbb Z \iff d\!:=\!(a,b)\mid h$
Proof $\ \ (\Rightarrow)\ \ $ If $\ h = \color{#c00}ax\!+\!\color{#c00}by\ $ then $\,d\mid \color{#c00}{a,b}\,\Rightarrow\, d\mid h$
$(\Leftarrow)\ \ $ If $\,d\mid h \,$ then $\,h = kd\ $ for $\,k\in\Bbb Z.\,$ By Bezout there are $\,m,n\in\Bbb Z\,$ such that
$$\ d\!=\!(a,b) = a m\! +\! b n \ \overset{\times\ k}\Rightarrow\, h \,=\, a (km) + b(kn)\quad{\bf QED} $$
Remark $ $ Said more succinctly in ideal or group language it is simply
$$ \bbox[8px,border:1px solid #c00]{a\,\Bbb Z + b\, \Bbb Z\, =\, (a,b)\,\Bbb Z}\qquad\qquad\qquad$$