$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}&\overbrace{%
\color{#66f}{\large\int_{0}^{1}\frac{\ln\pars{x}}{x - 1}\,\dd x}}
^{\ds{\dsc{x}\ \mapsto\ \dsc{1 - x}}}\ =\
=\int_{0}^{1}\ \overbrace{\frac{-\ln\pars{1 - x}}{x}}
^{\ds{=\ \dsc{\Li{2}'\pars{x}}}}\,\dd x\ =\
\int_{0}^{1}\Li{2}'\pars{x}\,\dd x=\
\overbrace{\Li{2}\pars{1}}^{\ds{=\ \dsc{\frac{\pi^{2}}{6}}}}\ -\
\overbrace{\Li{2}\pars{0}}^{\ds{=\ \dsc{0}}}
\\[5mm]&=\color{#66f}{\large\frac{\pi^{2}}{6}}
\end{align}
$\ds{\Li{\rm s}}$ is the PolyLogarithm Function where we used
$\ds{\Li{\rm s}'\pars{x}=\frac{\Li{\rm s - 1}\pars{x}}{x}}$ and $\ds{\Li{1}\pars{x} = -\ln\pars{1 - x}}$. Note that
$\ds{\Li{1}\pars{1}=\sum_{n=1}^{\infty}{1^{n} \over n^{2}}
=\sum_{n=1}^{\infty}{1 \over n^{2}}=\frac{\pi^{2}}{6}}$.