What follows is a LaTeX rendering of a sci.math post I made in 17 June 2006 that may be of use in connection with the answers that already appear.
http://groups.google.com/group/sci.math/msg/c1fcf87c7989f1a7
There are many ways to construct the real numbers. Among the more common methods are the use of Cauchy sequences, Dedekind cuts, decimal expansions, and nested intervals with rational endpoints. For some other ways to construct the real numbers, see Dhombres [1], Knopfmacher/Knopfmacher [4] [5] [6], Maier/Maier [7], Rieger [10], and Shiu [11]. For historical issues related to various constructions of the real numbers, see Ferreirós [2] (Chapter IV), Manheim [8] (Sections 4.6-4.13, pp. 76-95), Pellicer [9], and Simsa [12]. Fowler [3] proves $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ for several ways of constructing the real numbers, after a brief discussion about the significance of this identity.
[1] Jean G. Dhombres, Real numbers from Cauchy to Robinson, Southeast Asian Bulletin of Mathematics 1 (1977), 9-20. [MR 58 #21199]
[2] José Ferreirós, Labyrinth of Thought. A History of Set Theory and Its Role in Modern Mathematics, Science Networks / Historical Studies #23, Birkhäuser Verlag, 1999, xxi + 440 pages. [MR 2000m:03005; Zbl 934.03058]
[3] David Fowler, Dedekind's theorem: $\sqrt{2} \times \sqrt{3} = \sqrt{6},$ American Mathematical Monthly 99 #8 (October 1992), 725-733. [MR 93h:01022; Zbl 766.01016]
[4] Arnold Knopfmacher and John Knopfmacher, A new construction of the real numbers (via infinite products), Nieuw Archief voor Wiskunde (4) 5 (1987), 19-31. [MR 88i:11007; Zbl 624.10007]
[5] Arnold Knopfmacher and John Knopfmacher, Two concrete new constructions of the real numbers, Rocky Mountain Journal of Mathematics 18 (1988), 813-824. [MR 90k:26003a; Zbl 677.10006]
[6] Arnold Knopfmacher and John Knopfmacher, Two constructions of the real numbers via alternating series, International Journal of Mathematics and Mathematical Sciences 12 (1989), 603-613. [MR 90k:26003b; Zbl 683.10008]
[7] David E. Maier and Eugene A. Maier, Construction of the real numbers, (Two-Year) College Mathematics Journal 4 #1 (Winter 1973), 31-35.
[8] Jerome H. Manheim, The Genesis of Point Set Topology, Pergamon Press, 1964, xiii + 166 pages. [MR 37 #2561; Zbl 119.17702]
[9] Manuel López Pellicer, Las construcciones de los números reales [Constructions of real numbers], pp. 11-33 in Historia de la Mathemática en el Siglo XIX (Parte 2), Real Academia de Ciencias Exactas, Físicas y Naturales (Madrid), 1994. [MR 98f:01030; Zbl 952.00024]
[10] Georg Johann Rieger, A new approach to the real numbers (motivated by continued fractions), Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 33 (1982), 205-217. [MR 84j:26002; Zbl 513.10009]
[11] Peter Shiu, A new construction of the real numbers, Mathematical Gazette 58 #403 (March 1974), 39-46.
[12] Jaromír Simsa, Development of the concept of real numbers (Czech), pp. 259-282 in Mathematics in the 16th AND 17th Centuries (Czech) (Jevícko, 1997), Dej. Mat./Hist. Math. #12, Prometheus, Prague, 1999. [MR 2003g:01001]
An additional reference I found in March 2013:
[13] Alexandru Pintilie, A construction without factorization for the real numbers, Libertas Mathematica 8 (1988), 155-158. [MR 90e:00002; Zbl 661.26003]