First consider the following expansion of $\pi \cot(\pi z)$:
$$\pi \cot(\pi z) = \frac{1}{z} + \sum_{n = 1}^\infty \frac{2z}{z^2 - n^2} \quad (z \neq 0, \pm 1, \pm 2,\ldots)$$
Replacing $z$ by $iz$, we have
$$-i\pi \coth(\pi z) = \frac{1}{iz} - \sum_{n = 1}^\infty \frac{2iz}{z^2 + n^2} = -i\left(\frac{1}{z} + 2\sum_{n = 1}^\infty \frac{z}{z^2 + n^2}\right)$$
Thus
$$\pi \coth(\pi z) = \frac{1}{z} + 2\sum_{n = 1}^\infty \frac{z}{z^2 + n^2} \quad (z \neq 0, \pm i, \pm 2i,\ldots)$$
Evaluting at $z = 1$ results in
$$\pi \coth(\pi) = 1 + 2\sum_{n = 1}^\infty \frac{1}{1 + n^2},$$
or
$$\sum_{n = 1}^\infty \frac{1}{1 + n^2} = \frac{\pi \coth(\pi) - 1}{2}.$$
Therefore
\begin{align}\sum_{n = 0}^\infty \frac{1}{1 + n^2} &= \frac{\pi\coth(\pi)+ 1}{2}\\
&= \frac{1}{2}\left(\frac{\pi(e^{\pi} + e^{-\pi})}{e^{\pi} - e^{-\pi}} + 1\right)\\
&= \frac{1}{2}\left(\frac{\pi(e^{2\pi} + 1)}{e^{2\pi} - 1} + 1\right)\\
&= \frac{(\pi + 1)e^{2\pi} + (\pi - 1)}{2(e^{2\pi} - 1)}\\
&= \frac{(\pi + 1)(e^{2\pi} - 1) + 2\pi}{2(e^{2\pi} - 1)}\\
&= \frac{\pi + 1}{2} + \frac{\pi}{e^{2\pi} - 1}.\\
\end{align}