16

When trying to answer this question I arrived at $$\int^\infty_0\frac{\sin(nx)\sin^n{x}}{x^{n+1}}dx=\frac{\pi}{2}\frac{(-1)^n}{n!}\sum^n_{k=0}(-1)^k\binom{n}{k}k^n$$ After using Wolfram Alpha to evaluate the sum for several values of $n$, it seems that $$\sum^n_{k=0}(-1)^k\binom{n}{k}k^n\stackrel?=(-1)^nn!$$ The best I can do is to express the sum as $$\left(x\frac{d}{dx}\right)^n(1-x)^n\Bigg{|}_{x=1}$$ but that is as far as I can go. May I know how one can compute the sum? Thanks.

10 Answers10

14

You can derive the result using the sum you get.

Let $x = e^\theta$, we have

$$ \left.\left(x\frac{d}{dx}\right)^n(1-x)^n\right|_{x=1} = \left.\frac{d^n}{d\theta^n}\left(1-e^\theta\right)^n\right|_{\theta=0} = (-1)^n \left.\frac{d^n}{d\theta^n}\left[\theta^n\left(\frac{e^\theta-1}{\theta}\right)^n\right]\right|_{\theta=0} $$ Recall the General Leibniz rule for the $n^{th}$ derivative for a product of two functions:

$$(fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}$$ If one substitute $$f = \theta^n \quad\text{ and }\quad g = \begin{cases} \left(\frac{e^\theta-1}{\theta}\right)^n,&\theta \ne 0\\ 1, & \theta = 0 \end{cases} $$ and notice

  • $f^{(m)}(0) = 0$ for $m = 0, 1, \ldots, n-1$,
  • $g(\theta)$ is a smooth function over a neighborhood of $\theta = 0$.

We find under the General Leibniz rule, only the $k = n$ term survive and

$$\text{RHS} = (-1)^n \binom{n}{n} \left.\left( \frac{d^n}{d\theta^n}\theta^n \right)\right|_{\theta=0} g(0) = (-1)^n n! $$

achille hui
  • 122,701
  • 3
    This is my favorite answer. The change of variable technique is very clever. It makes sense of connections between recursion and series definitions for various special functions which I hadn't figured out before. – Cameron Williams Dec 26 '14 at 06:29
9

Suppose that I want to count the permutations of the set $[n]=\{1,\ldots,n\}$. For each $k\in[n]$ let $A_k$ be the set of functions from $[n]$ to $[n]\setminus\{k\}$. A function from $[n]$ to $[n]$ is a permutation iff it is not in $A_1\cup\ldots\cup A_n$, so there are $n^n-|A_1\cup\ldots\cup A_n|$ permutations. By a standard inclusion-exclusion argument

$$\begin{align*} |A_1\cup\ldots\cup A_n|&=\sum_{1\le k\le n}|A_k|\\ &\quad-\sum_{1\le k<\ell\le n}|A_k\cap A_\ell|\\ &\quad+\sum_{1\le j<k<\ell\le n}|A_j\cap A_k\cap A_\ell|\\ &\quad\;\vdots\\ &\quad+(-1)^{n+1}|A_1\cap\ldots\cap A_n|\;. \end{align*}\tag{1}$$

Let $K\subseteq[n]$, and let $k=|K|$. Then

$$\left|\bigcap_{i\in K}A_i\right|=(n-k)^n\;,$$

because $\bigcap_{i\in K}A_i$ is the set of functions from $[n]$ to $[n]$ whose ranges are disjoint from $K$. There are $\binom{n}k$ such sets $K$, so $(1)$ can be rewritten

$$\begin{align*} |A_1\cup\ldots\cup A_n|&=\binom{n}1(n-1)^n\\ &\quad-\binom{n}2(n-2)^n\\ &\quad+\binom{n}3(n-3)^n\\ &\quad\;\vdots\\ &\quad+(-1)^{n+1}\binom{n}n(n-n)^n\\ &=\sum_{k=1}^n(-1)^{k+1}\binom{n}k(n-k)^n\;. \end{align*}$$

Of course we know that the number of permutations of $[n]$ is $n!$, so

$$\begin{align*} n!&=n^n-\sum_{k=1}^n(-1)^{k+1}\binom{n}k(n-k)^n\\ &=n^n+\sum_{k=1}^n(-1)^k\binom{n}k(n-k)^n\\ &=\sum_{k=0}^n(-1)^k\binom{n}k(n-k)^n\\ &=\sum_{k=0}^n(-1)^k\binom{n}{n-k}(n-k)^n\\ &=\sum_{k=0}^n(-1)^{n-k}\binom{n}kk^n\\ &=(-1)^n\sum_{k=0}^n(-1)^k\binom{n}kk^n\;, \end{align*}$$

and multiplication by $(-1)^n$ yields the desired result.

Brian M. Scott
  • 616,228
7

Another approach is to recognise $\sum^n_{k=0}(-1)^k\binom{n}{k}k^n$ as the result of taking the sequence $(i^n)_{i\in\Bbb N}$ of $n$-th powers, applying $n$ times $-\Delta$, where $\Delta$ is the difference operator $(a_i)_{i\in\Bbb N}\mapsto(a_{i+1}-a_i)_{i\in\Bbb N}$, and then taking the initial term at $i=0$. For the difference operator applied to polynomial sequences it is convenient to use the basis of so called falling factorial powers defined by $$ x^{\underline k} = x(x-1)\ldots(x-k+1) $$ which satisfy $\Delta\bigl((i^{\underline k})_{i\in\Bbb N}\bigr)=k(i^{\underline{ k-1}})_{i\in\Bbb N}$ for $k>0$, and $\Delta\bigl((i^{\underline 0})_{i\in\Bbb N}\bigr)=\Delta\bigl((1)_{i\in\Bbb N}\bigr)=0$. Since $x^{\underline k}$ is a monic polynomial of degree $k$ in $x$, it is clear that expressing the sequence $(i^n)_{i\in\Bbb N}$ as linear combination of falling factorial power sequences $(i^{\underline k})_{i\in\Bbb N}$ for $k=0,1,\ldots,n$ will involve the final sequence $(i^{\underline n})_{i\in\Bbb N}$ with coefficient$~1$. All other terms are killed by $\Delta^n$, so $\Delta^n\bigl((i^n)_{i\in\Bbb N}\bigr)=\Delta^n\bigl((i^{\underline n})_{i\in\Bbb N}\bigr)$, which by the above relations is the constant sequence $(n!i^{\underline 0})_{i\in\Bbb N}=(n!)_{i\in\Bbb N}$. It then follows that $$ \sum^n_{k=0}(-1)^k\binom{n}{k}k^n = (-\Delta)^n\bigl((i^n)_{i\in\Bbb N}\bigr)\Bigm|_{i=0} =(-1)^n n!. $$

4

Here is a contribution using basic complex variables.

Suppose we are trying to show that $$\sum_{k=0}^n {n\choose k} (-1)^k k^n = (-1)^n n!$$

Observe that $$k^n = \frac{n!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \exp(kz) \; dz.$$

This gives for the sum the integral $$\frac{n!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} \sum_{k=0}^n {n\choose k} (-1)^k \exp(kz) \; dz$$ which is $$\frac{n!}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{n+1}} (1-\exp(z))^n \; dz.$$

But we have $$1-\exp(z) = - \frac{z}{1!} - \frac{z^2}{2!} - \frac{z^3}{3!} - \cdots$$ (starts at $z$ with no constant term) so the only term that contributes to the coefficient $[z^n] (1-\exp(z))^n$ is the product of the $n$ initial terms.

The coefficient on these is $-1,$ giving the final answer $$(-1)^n n!$$

Marko Riedel
  • 61,317
2

$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,\mathrm{Li}_{#1}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$

There is a 'surprising' result of Borwein & Borwein: \begin{equation} \int_{0}^{\infty}\prod_{k = 0}^{n}{\sin\pars{a_{k}x} \over x}\,\dd x = {\pi \over 2}\prod_{k = 1}^{n}a_{k}\,,\qquad a_{k} \in \mathbb{R}\,,\quad a_{0} \geq \sum_{k = 1}^{n}\verts{a_{k}} \end{equation}

With $\ds{\quad a_{0} = n\quad\mbox{and}\quad a_{1} = a_{2} = \cdots = a_{n} = 1}$, we'll have $\ds{a_{0} = n = \sum_{k = 1}^{n}a_{k}}$ such that \begin{align} \color{#f00}{\int_{0}^{\infty} {\sin\pars{nx}\sin^{n}\pars{x} \over x^{n + 1}}\,\dd x} & = \int_{0}^{\infty}{\sin\pars{nx} \over x}\,\ \overbrace{{\sin\pars{x} \over x} \,{\sin\pars{x} \over x}\ldots{\sin\pars{x} \over x}} ^{\ds{n\ \mbox{terms}}}\ \,\dd x \\[5mm] & = {\pi \over 2}\prod_{k = 1}^{n}1 = \color{#f00}{\pi \over 2} \end{align}

Felix Marin
  • 89,464
1

Using inclusion-exclusion principle. Indeed, let $F$ be the set of all functions from $\{1,2,...,n\}$ into $\{1,2,...,n\}$. And let $A_{k}$ be the set of all $f \in F$ such that $k \notin \text{image}(f)$

Viktor Vaughn
  • 19,278
1

The sum indeed evaluates to $(-1)^nn!$ and here is one possible derivation. In the (final) expression you got in the question, you can substitute $y=x-1$, and observe that for any function $f$ one has $\def\d{\mathrm d}\frac\d{\d x}f(x-1)=f'(x-1)$, which is the result of setting $y=x-1$ in $\frac\d{\d y}f(y)$; then you need to find $$ c_n=\left.\left((y+1)\circ\frac\d{\d y}\right)^n((-y)^n)\right|_{y=0}. $$ The operator $E=(y+1)\circ\frac\d{\d y}$ satisfies $E(y^k)=ky^k+ky^{k-1}$, from which one easily proves by induction that $E^m(y^k)|_{y=0}=0$ whenever $k>m$. Now one computes $$ c_n = E^n\bigl((-y)^n\bigr)|_{y=0} = E^{n-1}\Bigl(n(-y)^n)-n(-y)^{n-1}\Bigr)|_{y=0} = -nE^{n-1}\bigl((-y)^{n-1}\bigr)|_{y=0}=-nc_{n-1} $$ from which $c_n=(-1)^nn!$ follows by induction.

1

It is convenient to use the coefficient of operator $[t^k]$ to denote the coefficient of $t^k$ in a series. This way we can write e.g. \begin{align*} [t^k](1+t)^n=\binom{n}{k}\qquad\text{and}\qquad n![t^n]e^{kt}=k^n \end{align*}

We obtain \begin{align*} \sum_{k=0}^n(-1)^k\binom{n}{k}k^n&=\sum_{k=0}^\infty(-1)^k[u^k](1+u)^nn![t^n]e^{kt}\tag{1}\\ &=n![t^n]\sum_{k=0}^\infty\left(-e^t\right)^k[u^k](1+u)^n\tag{2}\\ &=n![t^n](1-e^t)^n\tag{3}\\ &=(-1)^nn!\tag{4} \end{align*} and the claim follows.

Comment:

  • In (1) we apply the coefficient of operator twice. We also extend the upper range of the series to $\infty$ without changing anything since we are adding zeros only.

  • In (2) we do some rearrangements and use the linearity of the coefficient of operator.

  • In (3) we use the substitution rule of the coefficient of operator with $u=-e^t$ \begin{align*} A(t)=\sum_{k=0}^\infty a_kt^k=\sum_{k=0}^\infty t^k[u^k]A(u) \end{align*}

  • In (4) we select the coefficient of $t^n$ from $(1-e^t)^n=(-1)^n(t+\frac{t^2}{2!}+\cdots)^n$.

Markus Scheuer
  • 108,315
1

It is a partial case ($x=0$) of the Tepper's identity $$ \sum^n_{k=0}(-1)^k\binom{n}{k}(x-k)^n=n!. $$

Leox
  • 8,120
0

It also follows from an identity due to S.M. Ruiz (37): $$\sum_{k=0}^{n}(-1)^k{n\choose k}B_n(k)=(-1)^nn!$$ where $B_n(x)$ is $n$-th Bernouilli polynomial

I will add details.

Bob Dobbs
  • 10,988