Method described by Prof. Lubin at Continued fraction of $\sqrt{67} - 4$
$$ \sqrt { 29} = 5 + \frac{ \sqrt {29} - 5 }{ 1 } $$
$$ \frac{ 1 }{ \sqrt {29} - 5 } = \frac{ \sqrt {29} + 5 }{4 } = 2 + \frac{ \sqrt {29} - 3 }{4 } $$
$$ \frac{ 4 }{ \sqrt {29} - 3 } = \frac{ \sqrt {29} + 3 }{5 } = 1 + \frac{ \sqrt {29} - 2 }{5 } $$
$$ \frac{ 5 }{ \sqrt {29} - 2 } = \frac{ \sqrt {29} + 2 }{5 } = 1 + \frac{ \sqrt {29} - 3 }{5 } $$
$$ \frac{ 5 }{ \sqrt {29} - 3 } = \frac{ \sqrt {29} + 3 }{4 } = 2 + \frac{ \sqrt {29} - 5 }{4 } $$
$$ \frac{ 4 }{ \sqrt {29} - 5 } = \frac{ \sqrt {29} + 5 }{1 } = 10 + \frac{ \sqrt {29} - 5 }{1 } $$
Simple continued fraction tableau:
$$
\begin{array}{cccccccccccccccccccccccc}
& & 5 & & 2 & & 1 & & 1 & & 2 & & 10 & & 2 & & 1 & & 1 & & 2 & & 10 & \\
\\
\frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 5 }{ 1 } & & \frac{ 11 }{ 2 } & & \frac{ 16 }{ 3 } & & \frac{ 27 }{ 5 } & & \frac{ 70 }{ 13 } & & \frac{ 727 }{ 135 } & & \frac{ 1524 }{ 283 } & & \frac{ 2251 }{ 418 } & & \frac{ 3775 }{ 701 } & & \frac{ 9801 }{ 1820 } \\
\\
& 1 & & -4 & & 5 & & -5 & & 4 & & -1 & & 4 & & -5 & & 5 & & -4 & & 1
\end{array}
$$
$$
\begin{array}{cccc}
\frac{ 1 }{ 0 } & 1^2 - 29 \cdot 0^2 = 1 & \mbox{digit} & 5 \\
\frac{ 5 }{ 1 } & 5^2 - 29 \cdot 1^2 = -4 & \mbox{digit} & 2 \\
\frac{ 11 }{ 2 } & 11^2 - 29 \cdot 2^2 = 5 & \mbox{digit} & 1 \\
\frac{ 16 }{ 3 } & 16^2 - 29 \cdot 3^2 = -5 & \mbox{digit} & 1 \\
\frac{ 27 }{ 5 } & 27^2 - 29 \cdot 5^2 = 4 & \mbox{digit} & 2 \\
\frac{ 70 }{ 13 } & 70^2 - 29 \cdot 13^2 = -1 & \mbox{digit} & 10 \\
\frac{ 727 }{ 135 } & 727^2 - 29 \cdot 135^2 = 4 & \mbox{digit} & 2 \\
\frac{ 1524 }{ 283 } & 1524^2 - 29 \cdot 283^2 = -5 & \mbox{digit} & 1 \\
\frac{ 2251 }{ 418 } & 2251^2 - 29 \cdot 418^2 = 5 & \mbox{digit} & 1 \\
\frac{ 3775 }{ 701 } & 3775^2 - 29 \cdot 701^2 = -4 & \mbox{digit} & 2 \\
\frac{ 9801 }{ 1820 } & 9801^2 - 29 \cdot 1820^2 = 1 & \mbox{digit} & 10 \\
\end{array}
$$
======================================================================================
$$ \sqrt { 95} = 9 + \frac{ \sqrt {95} - 9 }{ 1 } $$
$$ \frac{ 1 }{ \sqrt {95} - 9 } = \frac{ \sqrt {95} + 9 }{14 } = 1 + \frac{ \sqrt {95} - 5 }{14 } $$
$$ \frac{ 14 }{ \sqrt {95} - 5 } = \frac{ \sqrt {95} + 5 }{5 } = 2 + \frac{ \sqrt {95} - 5 }{5 } $$
$$ \frac{ 5 }{ \sqrt {95} - 5 } = \frac{ \sqrt {95} + 5 }{14 } = 1 + \frac{ \sqrt {95} - 9 }{14 } $$
$$ \frac{ 14 }{ \sqrt {95} - 9 } = \frac{ \sqrt {95} + 9 }{1 } = 18 + \frac{ \sqrt {95} - 9 }{1 } $$
Simple continued fraction tableau:
$$
\begin{array}{cccccccccccccc}
& & 9 & & 1 & & 2 & & 1 & & 18 & \\
\\
\frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 9 }{ 1 } & & \frac{ 10 }{ 1 } & & \frac{ 29 }{ 3 } & & \frac{ 39 }{ 4 } \\
\\
& 1 & & -14 & & 5 & & -14 & & 1
\end{array}
$$
$$
\begin{array}{cccc}
\frac{ 1 }{ 0 } & 1^2 - 95 \cdot 0^2 = 1 & \mbox{digit} & 9 \\
\frac{ 9 }{ 1 } & 9^2 - 95 \cdot 1^2 = -14 & \mbox{digit} & 1 \\
\frac{ 10 }{ 1 } & 10^2 - 95 \cdot 1^2 = 5 & \mbox{digit} & 2 \\
\frac{ 29 }{ 3 } & 29^2 - 95 \cdot 3^2 = -14 & \mbox{digit} & 1 \\
\frac{ 39 }{ 4 } & 39^2 - 95 \cdot 4^2 = 1 & \mbox{digit} & 18 \\
\end{array}
$$
=================================================================================
$$ \sqrt { 74} = 8 + \frac{ \sqrt {74} - 8 }{ 1 } $$
$$ \frac{ 1 }{ \sqrt {74} - 8 } = \frac{ \sqrt {74} + 8 }{10 } = 1 + \frac{ \sqrt {74} - 2 }{10 } $$
$$ \frac{ 10 }{ \sqrt {74} - 2 } = \frac{ \sqrt {74} + 2 }{7 } = 1 + \frac{ \sqrt {74} - 5 }{7 } $$
$$ \frac{ 7 }{ \sqrt {74} - 5 } = \frac{ \sqrt {74} + 5 }{7 } = 1 + \frac{ \sqrt {74} - 2 }{7 } $$
$$ \frac{ 7 }{ \sqrt {74} - 2 } = \frac{ \sqrt {74} + 2 }{10 } = 1 + \frac{ \sqrt {74} - 8 }{10 } $$
$$ \frac{ 10 }{ \sqrt {74} - 8 } = \frac{ \sqrt {74} + 8 }{1 } = 16 + \frac{ \sqrt {74} - 8 }{1 } $$
Simple continued fraction tableau:
$$
\begin{array}{cccccccccccccccccccccccc}
& & 8 & & 1 & & 1 & & 1 & & 1 & & 16 & & 1 & & 1 & & 1 & & 1 & & 16 & \\
\\
\frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 8 }{ 1 } & & \frac{ 9 }{ 1 } & & \frac{ 17 }{ 2 } & & \frac{ 26 }{ 3 } & & \frac{ 43 }{ 5 } & & \frac{ 714 }{ 83 } & & \frac{ 757 }{ 88 } & & \frac{ 1471 }{ 171 } & & \frac{ 2228 }{ 259 } & & \frac{ 3699 }{ 430 } \\
\\
& 1 & & -10 & & 7 & & -7 & & 10 & & -1 & & 10 & & -7 & & 7 & & -10 & & 1
\end{array}
$$
$$
\begin{array}{cccc}
\frac{ 1 }{ 0 } & 1^2 - 74 \cdot 0^2 = 1 & \mbox{digit} & 8 \\
\frac{ 8 }{ 1 } & 8^2 - 74 \cdot 1^2 = -10 & \mbox{digit} & 1 \\
\frac{ 9 }{ 1 } & 9^2 - 74 \cdot 1^2 = 7 & \mbox{digit} & 1 \\
\frac{ 17 }{ 2 } & 17^2 - 74 \cdot 2^2 = -7 & \mbox{digit} & 1 \\
\frac{ 26 }{ 3 } & 26^2 - 74 \cdot 3^2 = 10 & \mbox{digit} & 1 \\
\frac{ 43 }{ 5 } & 43^2 - 74 \cdot 5^2 = -1 & \mbox{digit} & 16 \\
\frac{ 714 }{ 83 } & 714^2 - 74 \cdot 83^2 = 10 & \mbox{digit} & 1 \\
\frac{ 757 }{ 88 } & 757^2 - 74 \cdot 88^2 = -7 & \mbox{digit} & 1 \\
\frac{ 1471 }{ 171 } & 1471^2 - 74 \cdot 171^2 = 7 & \mbox{digit} & 1 \\
\frac{ 2228 }{ 259 } & 2228^2 - 74 \cdot 259^2 = -10 & \mbox{digit} & 1 \\
\frac{ 3699 }{ 430 } & 3699^2 - 74 \cdot 430^2 = 1 & \mbox{digit} & 16 \\
\end{array}
$$