$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\lim_{n\ \to\ \infty}{1 \over n^{p + 1}}\sum_{k\ =\ 1}^{n}k^{p}
={1 \over p + 1}:\ {\large ?}}$.
\begin{align}&\color{#66f}{\large%
\lim_{n\ \to\ \infty}{1 \over n^{p + 1}}\sum_{k\ =\ 1}^{n}k^{p}}
=\lim_{n\ \to\ \infty}{1 \over n}\sum_{k\ =\ 1}^{n}\pars{k \over n}^{p}
=\int_{0}^{1}x^{p}\,\dd x
=\left.{x^{p + 1} \over p + 1}\right\vert_{\, x\ =\ 0}^{\,x\ =\ 1}
=\color{#66f}{\large{1 \over p + 1}}
\end{align}