I am going to go ahead and post my method. It is similar to xpauls except I used digamma, which is related to the harmonic series anyway.
Break integral up:
$$\int_{0}^{1}\frac{\log^{2}(x)\log(1+x)}{(1-x)(x^{2}+1)}dx+\int_{1}^{\infty}\frac{\log^{2}(x)\log(1+x)}{(1-x)(x^{2}+1)}dx$$
In the right integral, make the sub $x=1/t$. This gives:
$$\int_{0}^{1}\frac{\log^{2}(x)\log(1+x)}{(x^{2}+1)}dx+\int_{0}^{1}\frac{x\log^{3}(x)}{(1-x)(x^{2}+1)}dx$$
The right integral:
Break up into $$1/2\int_{0}^{1}\frac{x\log^{3}(x)}{x^{2}+1}dx-1/2\int_{0}^{1}\frac{\log^{3}(x)}{x^{2}+1}dx+1/2\int_{0}^{1}\frac{\log^{3}(x)}{1-x}dx$$
I am not going to work through each of these. But, suffice to say, they can be done without too much effort by using geometric series. For instance, take the middle one:
$$1/2\int_{0}^{1}\log^{3}(x)\sum_{k=0}^{\infty}(-1)^{k}x^{2k}dx=3\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k+1)^{4}}$$
Doing so to all three leads to series which evaluate in terms of $\zeta(4)$ and $\psi_{3}$. Summing them results in:
$$ \boxed{\displaystyle \int_{0}^{1}\frac{x\log^{3}(x)}{(1-x)(x^{2}+1)}dx=\frac{-9\pi^{4}}{256}+\frac{1}{512}\left[\psi_{3}(1/4)-\psi_{3}(3/4)\right]}$$
The left integral up top is a little more difficult. At least I think so.
$$\int_{0}^{1}\frac{\log^{2}(x)\log(1+x)}{x^{2}+1}dx$$
Use the Taylor series for $\log(1+x)$:
$$\int_{0}^{1}\frac{\log^{2}(x)}{x^{2}+1}\sum_{n=1}^{\infty}\frac{(-1)^{n}x^{n}}{n}$$
Note the incomplete Beta function defined as: $\displaystyle \int_{0}^{1}\frac{x^{a}}{x^{2}+1}dx=1/4\left[\psi \left(\frac{a+3}{4}\right)-\psi\left(\frac{a+1}{4}\right)\right]$.
Diffing this twice w.r.t 'a' introduces the log-square term and gives:
$$\int_{0}^{1}\frac{x^{a+n}\log^{2}(x)}{x^{2}+1}dx=1/64\left[\psi_{2} \left(\frac{a+n+3}{4} \right)-\psi_{2} \left(\frac{a+n+1}{4} \right) \right]$$.
Thus, letting $a=0$, $$\int_{0}^{1}\frac{\log^{2}(x)\log(1+x)}{x^{2}+1}dx=1/64\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n}\left[\psi_{2}\left(\frac{n+3}{4}\right)-\psi_{2}\left(\frac{n+1}{4}\right)\right]$$
$$=\boxed{\displaystyle \frac{\pi^{2}}{6}G+\frac{\pi^{3}}{32}\log(2)-\frac{1}{768}\left[\psi_{3}\left(1/4\right)-\psi_{3}\left(3/4\right)\right]}$$
This series result, when combined with the other boxed result, gives the solution to the original integral.
The only minor issue I have is evaluating this tetragamma series. As I said, The Flajolet-Salvy residue method may work, but finding the correct kernel is the first important task. Since it alternates, I would assume something with $\pi \csc(\pi z)$
Of course, one could just say the heck with it and use this as a lemma. But, I would like to evaluate it though.