I need help evaluating this with contour integration $$ \int_{0}^{1}{\ln\left(\,x\,\right)\over \,\sqrt{\vphantom{\large A}\,1 - x^{2}\,}}\,{\rm d}x $$ I am not sure as to how to work with the branch cuts of both $\ln\left(\,x\,\right)$ and $\sqrt{1 - x^{2}}$
Second part is to evaluate $$ \int_{0}^1 \frac{\sqrt{\,\vphantom{\large a}\ln\left(\,x\,\right)}} {\sqrt{\vphantom{\large A}\,1 - x^{2}\,}} \mathrm dx$$