If $(X_1,F_1)$ and $(X_2,F_2)$ are two measurable space,
$$T:X_1\to X_2$$
is a measurable function, and
$$\mu:F_1\to[0,\infty]$$
is a measure on $X_1$, then the mesaure
$$\mu \circ T^{-1}:F_2\to [0,\infty]$$
defined by
$$\mu\circ T^{-1}(B)=\mu(T^{-1}(B))\qquad B\in F_2$$
is a measure on $X_2$. A measurable function $f$ on $X_2$ is integrable with respect to $\mu\circ T^{-1}$ iff $f\circ T$ is integrable with respect to $\mu$ and we have
$$\int_{X_2}f\;d(\mu\circ T^{-1})=\int_{X_1}f\circ T\;d\mu. \tag{1}$$
If $T$ is one-to-one, we have for any $A\in F_1$:
$$\int_{T(A)}f\;d(\mu\circ T^{-1})=\int_{A}f\circ T\;d\mu \tag{2}$$
Proof of (1)
It is clear that $\mu\circ T^{-1}$ is measure on $X_2$.
For proof of (1) it suffices to show it holds for any nonnegative real valued function $f$ and so it is proved for every real measurable function since:
$$f=f^+-f^-.$$
Equation (1) is proved for any complex measurable function $(f=f_{Re}+i\,f_{Im})$.
Let $f$ be a nonnegative real-valued measurable function.
Then there exists a sequence of simple measurable functions $\phi_n=\sum_{i=1}^{m_n} c_{n,i}\,\chi_{B_{n,i}}$ such that
$$\phi_n\nearrow f$$
and since the integral of left side of (1) equals to:
$$
\begin{align*}
&\int_{X_2}f\;\;d(\mu\circ T^{-1}) \\
&=\lim_{n\to \infty}\int_{X_2}\phi_n \;d(\mu\circ T^{-1}) \\
&=\lim_{n\to \infty}\int_{X_2}\sum_{i=1}^{m_n}c_{n,i}\,\chi_{B_{n,i}} \;d(\mu\circ T^{-1}) \\
&=\lim_{n\to\infty}\sum_{i=1}^{m_n}c_{n,i}\, \int_{X_2}\chi_{B_{n,i}} \;d(\mu\circ T^{-1})\\
&=\lim_{n\to\infty}\sum_{i=1}^{m_n}c_{n,i}\;\mu(T^{-1}(B_{n,i}))\\
&=\lim_{n\to\infty}\sum_{i=1}^{m_n}c_{n,i}\;\int_{X_1}\chi_{T^{-1}(B_{n,i})}\;d\mu\\
&=\lim_{n\to\infty}\sum_{i=1}^{m_n}c_{n,i}\;\int_{X_1}\chi_{B_{n,i}}\circ T\;\;d\mu \\
&=\lim_{n\to \infty}\int_{X_1}\left[\sum_{i=1}^{m_n}c_{n,i}\,\chi_{B_{n,i}}\right]\circ T\;\; d\mu \\ &=\lim_{n\to \infty}\int_{X_1}\phi_n\circ T\;\; d\mu \\
&=\int_{X_1}f\circ T\;\; d\mu.
\end{align*}
$$
The last paragraph is established because $\phi_n\circ T$ is a simple measurable function such that
$$\phi_n\circ T\;\nearrow\; f\circ T.$$
Proof of (2)
Now for proof of (2), we have:
$$
\begin{align*}
\int_{T(A)}f\;\;d(\mu\circ T^{-1})
&=\int_{X_2}f\;\chi_{T(A)}\;\;d(\mu\circ T^{-1}) \\
&=\int_{X_1}(f\;\chi_{T(A)})\circ T\quad d\mu \\
&\color{magenta}{=}\int_{X_1}(f\circ T)\,.\,\chi_{A}\quad d\mu \\
&=\int_{A}f\circ T\quad d\mu.
\end{align*}
$$
The equality in pink holds because
$$
\begin{align*}
&(f\;\chi_{T(A)})\circ T\,(x) \\
&= f(T(x))\;.\chi_{T(A)}(T(x)) \\
&= \begin{cases}
f(T(x)) & \text{ $T(x)\in T(A)$} \\
0 & \text{ $T(x)\notin T(A)$}
\end{cases} \\
&\color{red}{=}\begin{cases}
f(T(x)) & \text{ $x\in A$} \\
0 & \text{ $x\notin A$}
\end{cases} \\
&=[\,(f\circ T)\,.\,\chi_A\,](x)
\end{align*}
$$
where the equality in red holds because $T$ is one to one.