Let $R$ be a non-unital ring. Let $F:R\times R\longrightarrow R$ be a function given by the formula $F(x,y)=xy.$ Let $r\not\in\operatorname{im}(F).$ Such elements can exists, for example $2\in 2\mathbb Z$ isn't a product. It seems to be a major difference between unital and non-unital rings. I'm only starting to study non-unital rings and I thought it would be a good idea to understand this phenomenon better first. But I don't know any terminology, whence my question. What is the name (if there is any) of an element such as $r?$ Is there always such an element in a ring that actually doesn't have a unity? If not, what is the name of a ring in which such an element exists?
And finally, where can I read about it?