Let $f=f(x,y,z)$ be a scalar function and $\mathbf F=\langle F_1(x,y,z),F_2(x,y,z),F_3(x,y,z)\rangle$ be a vector field in $\mathbb{R}^3$. Then we can think of $f$ or $\mathbf F$ (as appropriate) as the inputs to the operators grad, div, curl, and even laplacian with the resulting outputs indicated:
\begin{align}
f\longrightarrow &\ \color{blue}{{\LARGE\boxed{\nabla}}} \longrightarrow \langle f_x,f_y,f_z\rangle\\
\mathbf F\longrightarrow &\ \color{blue}{{\LARGE\boxed{\nabla\cdot}}} \longrightarrow {\partial F_1\over \partial x}+{\partial F_2\over \partial y}+{\partial F_3\over \partial z}\\
\mathbf F\longrightarrow &\ \color{blue}{{\LARGE\boxed{\nabla\times}}} \longrightarrow \left\langle {\partial F_3\over \partial y}-{\partial F_2\over \partial z},{\partial F_1\over \partial z}-{\partial F_3\over \partial x},{\partial F_2\over \partial x}-{\partial F_1\over \partial y}\right\rangle\\
f\longrightarrow &\ \color{blue}{{\LARGE\boxed{\nabla\cdot\nabla}}} \longrightarrow f_{xx}+f_{yy}+f_{zz}.\\
\end{align}
Thus $\nabla$ is not a vector, but rather indicates an operator whose action on the input $f$ results in the output $\langle f_x,f_y,f_z\rangle$. Similarly for the others.
If you find the del notation counterproductive, just abandon that notation/nomenclature for this:
\begin{align}
f\longrightarrow &\ \color{blue}{{\LARGE\boxed{\text{grad}}}} \longrightarrow \langle f_x,f_y,f_z\rangle\\
\mathbf F\longrightarrow &\ \color{blue}{{\LARGE\boxed{\text{div}}}} \longrightarrow {\partial F_1\over \partial x}+{\partial F_2\over \partial y}+{\partial F_3\over \partial z}\\
\mathbf F\longrightarrow &\ \color{blue}{{\LARGE\boxed{\text{curl}}}} \longrightarrow \left\langle {\partial F_3\over \partial y}-{\partial F_2\over \partial z},{\partial F_1\over \partial z}-{\partial F_3\over \partial x},{\partial F_2\over \partial x}-{\partial F_1\over \partial y}\right\rangle\\
f\longrightarrow &\ \color{blue}{{\LARGE\boxed{\text{lap}}}} \longrightarrow f_{xx}+f_{yy}+f_{zz}.\\
\end{align}