Using $\boldsymbol{1+x\le e^x}$
Since $1+x\le e^x$ for all $x\in\mathbb{R}$,
$$
\begin{align}
a_n
&=\prod_{k=1}^n\frac{2k-1}{2k}\\
&=\prod_{k=1}^n\left(1-\frac1{2k}\right)\\
&\le\prod_{k=1}^ne^{-\large\frac1{2k}}\\[3pt]
&=e^{-\frac12H_n}\tag{1}
\end{align}
$$
where $H_n$ are the Harmonic Numbers. Since the Harmonic Series diverges, $(1)$ tends to $0$.
Using Gautschi's Inequality
$$
\begin{align}
a_n
&=\prod_{k=1}^n\frac{2k-1}{2k}\\
&=\prod_{k=1}^n\frac{k-\frac12}{k}\\
&=\frac{\Gamma\!\left(n+\frac12\right)}{\sqrt\pi\,\Gamma(n+1)}\\[6pt]
&\le\frac1{\sqrt{\pi n}}\tag{2}
\end{align}
$$
Commentary
Gautschi's Inequality also says that
$$
\begin{align}
a_n
&=\frac{\Gamma\!\left(n+\frac12\right)}{\sqrt\pi\,\Gamma(n+1)}\\
&\ge\frac1{\sqrt{\pi\left(n+\frac12\right)}}\tag{3}
\end{align}
$$
Therefore,
$$
\lim_{n\to\infty}\sqrt{n}\,a_n=\frac1{\sqrt\pi}\tag{4}
$$
Putting the second line of $(1)$ and the limit in $(4)$ together, we can show that
$$
\gamma+\sum_{n=2}^\infty\frac{\zeta(n)}{n2^{n-1}}=\log(\pi)\tag{5}
$$
where $\gamma$ is the Euler-Mascheroni Constant and $\zeta$ is the Riemann Zeta Function.