10

How can I show

$\lim_{n \to \infty} a_n = 0$

$a_n = {1.3.5 ... (2n-1)\over 2.4.6...(2n)}$

I have shown that $a_n$ is monotonically decreasing. I thought to shown sequence is bounded from below then it automatically would converge and hence my question will be solve. But I'm unable to show its boundedness... Or there maybe another method to prove this. Thanks

godonichia
  • 2,235

5 Answers5

16

$\forall k\in\mathbb{N}$
$k^2+2k<k^2+2k+1\Rightarrow k(k+2)<(k+1)^2\Rightarrow\frac{k}{k+1}<\frac{k+1}{k+2}$

$\therefore a_n=\frac{1\cdot3\cdot5...(2n-1)}{2\cdot4\cdot6...2n}=\frac{1}{2}\cdot\frac{3}{4}...\frac{k}{k+1}...\frac{2n-1}{2n}<\frac{2}{3}\cdot\frac{4}{5}...\frac{k+1}{k+2}...\frac{2n}{2n+1}=\frac{2\cdot4\cdot6...2n}{1\cdot3\cdot5...(2n+1)}$
where, $k$ is an odd natural number.

$\Rightarrow {a_n}^2<\frac{1\cdot3\cdot5...(2n-1)}{2\cdot4\cdot6...2n}\cdot\frac{2\cdot4\cdot6...2n}{1\cdot3\cdot5...(2n+1)}=\frac{1}{2n+1}$

$\Rightarrow 0<a_n<\frac{1}{\sqrt{2n+1}}$

Using Squeeze theorem, we get $\underset{n\rightarrow\infty}{\lim} a_n=0$.

reyna
  • 2,101
  • 1
    I know this is a dumb question, but can you please tell me how did you infer $\therefore a_n=\frac{1\cdot3\cdot5...(2n-1)}{2\cdot4\cdot6...2n}<\frac{2\cdot4\cdot6...2n}{1\cdot3\cdot5...(2n+1)}$ from $n(n+2)<(n+1)^2\Rightarrow\frac{n}{n+1}<\frac{n+1}{n+2}$? Thanks!! – Natasha J Apr 21 '21 at 02:53
  • @NatashaJ I hope you have understood how we get $\frac{k}{k+1}<\frac{k+1}{k+2}$. Now check that, for $n=1$ you get $\frac{1}{2}<\frac{2}{3}$, for $n=3$ you get $\frac{3}{4}<\frac{4}{5}$, and so on. In other words for an odd $k$, you see that $\frac{k}{k+1}<\frac{k+1}{k+2}$. – reyna Apr 21 '21 at 13:54
  • @NatashaJ I have modified the step, hope it clears your doubt. – reyna Apr 21 '21 at 13:59
  • 1
    thanks so much. Now I get it! – Natasha J Apr 21 '21 at 15:00
8

Using $\boldsymbol{1+x\le e^x}$

Since $1+x\le e^x$ for all $x\in\mathbb{R}$, $$ \begin{align} a_n &=\prod_{k=1}^n\frac{2k-1}{2k}\\ &=\prod_{k=1}^n\left(1-\frac1{2k}\right)\\ &\le\prod_{k=1}^ne^{-\large\frac1{2k}}\\[3pt] &=e^{-\frac12H_n}\tag{1} \end{align} $$ where $H_n$ are the Harmonic Numbers. Since the Harmonic Series diverges, $(1)$ tends to $0$.


Using Gautschi's Inequality $$ \begin{align} a_n &=\prod_{k=1}^n\frac{2k-1}{2k}\\ &=\prod_{k=1}^n\frac{k-\frac12}{k}\\ &=\frac{\Gamma\!\left(n+\frac12\right)}{\sqrt\pi\,\Gamma(n+1)}\\[6pt] &\le\frac1{\sqrt{\pi n}}\tag{2} \end{align} $$


Commentary

Gautschi's Inequality also says that $$ \begin{align} a_n &=\frac{\Gamma\!\left(n+\frac12\right)}{\sqrt\pi\,\Gamma(n+1)}\\ &\ge\frac1{\sqrt{\pi\left(n+\frac12\right)}}\tag{3} \end{align} $$ Therefore, $$ \lim_{n\to\infty}\sqrt{n}\,a_n=\frac1{\sqrt\pi}\tag{4} $$ Putting the second line of $(1)$ and the limit in $(4)$ together, we can show that $$ \gamma+\sum_{n=2}^\infty\frac{\zeta(n)}{n2^{n-1}}=\log(\pi)\tag{5} $$ where $\gamma$ is the Euler-Mascheroni Constant and $\zeta$ is the Riemann Zeta Function.

robjohn
  • 345,667
5

Let's prove using induction that $$a_n\le\frac{1}{\sqrt{3n+1}}.$$ For $n=1$ it is true. Now we just need to prove that$$\frac{(2n+1)^2}{(2n+2)^2}\le\frac{3n+1}{3n+4}$$or $$(4n^2+4n+1)(3n+4)\le(4n^2+8n+4)(3n+1)$$or$$12n^3+28n^2+19n+4\le12n^3+28n^2+20n+4.$$

pointer
  • 1,811
  • If we are not given the limit it converges to then how would we go about it – godonichia Nov 17 '14 at 08:51
  • I don't know. Maybe we could find asymtothics using Stirling's formula, then try to find this inequality. – pointer Nov 17 '14 at 09:08
  • (+1) It's neater with $n - 1$ in place of $n$: $$ \left(\frac{2n - 1}{2n}\right)^2 \leqslant \frac{3n - 2}{3n + 1} \iff \frac{4n - 1}{4n^2} \geqslant \frac3{3n + 1} \iff (4n - 1)(3n + 1) \geqslant 12n^2 \iff n \geqslant 1. $$ – Calum Gilhooley Mar 24 '22 at 21:30
4

Multiply the numerator by the denominator; so $$a_n=\frac{1\times3\times5\times ... \times(2n-1)}{ 2\times4\times6\times...\times(2n)}=\frac{1\times2\times3\times ... \times(2n)}{\Big(2\times4\times6\times...\times(2n)\Big)^2}=\frac{(2n)!}{4^n(n!)^2}$$ If now you use Stirling approximation $$m! \approx \sqrt{2 \pi } e^{-m} m^{m+\frac{1}{2}}$$ and then $$a_n \approx \frac{1}{\sqrt{\pi n} }$$ A more detailed approach would show for the asymptotic behavior $$a_n \approx \frac{1}{\sqrt{\pi n} }\Big(1-\frac{1}{8n}\Big)$$

2

Your sequence can be rewritten as $$a_n=\frac{1\cdot3\cdot...\cdot(2n-1)}{2\cdot4\cdot...\cdot2n}=\frac{1\cdot2\cdot3\cdot...\cdot(2n-1)\cdot2n}{(2\cdot4\cdot...\cdot2n)^2}=\frac{(2n)!}{2^{2n}(n!)^2}$$ Using Stirling's approximation we get $$a_n=\frac{(2n)!}{2^{2n}(n!)^2}\sim\frac{1}{2^{2n}}\cdot\frac{\sqrt{2\pi 2n}\cdot(\frac{2n}{e})^{2n}}{(\sqrt{2\pi n}(\frac{n}{e})^n)^2}=\frac{1}{2^{2n}}\cdot\frac{\sqrt{2}\cdot2^{2n}}{\sqrt{2\pi n}}=\frac{\sqrt{2}}{\sqrt{2\pi n}}\to 0$$ as $n\to\infty$.

Arian
  • 6,277
  • i havent studied stirlings approximation yet . Can u show me another way which uses sequence series concepts – godonichia Nov 17 '14 at 08:35