The problem is equivalent to showing
$$
\sum_{n\ge1}{(-1)^n\log n\over n}=\gamma\log2+\frac12\log^22
$$
Now, let's first consider the finite case:
$$
\begin{aligned}
\sum_{n\le N}{(-1)^n\log n\over n}
&=2\sum_{n\le N/2}{\log(2n)\over2n}-\sum_{n\le N}{\log n\over n}+\mathcal O\left(\log N\over N\right) \\
&=\sum_{n\le N/2}{\log2+\log n\over n}-\sum_{n\le N}{\log n\over n}+\mathcal O\left(\log N\over N\right) \\
&=\log2\sum_{n\le N/2}\frac1n-\sum_{N/2<n\le N}{\log n\over n}+\mathcal O\left(\log N\over N\right) \\
\end{aligned}
$$
In fact, using Riemann-Stieltjes integral, we can show
$$
\begin{aligned}
\sum_{N/2<n\le N}{\log n\over n}
&=\int_{N/2}^N{\log x\over x}\mathrm d\lfloor x\rfloor \\
&={N\log(N)-N\log(N/2)\over N}-\int_{N/2}^N[x-\{x\}]\mathrm d\left(\log x\over x\right)+\mathcal O\left(\frac1n\right) \\
&=\log2-\int_{N/2}^N\left({1-\log x\over x}\right)\mathrm dx+\mathcal O\left(\log N\over N\right) \\
&=\int_{N/2}^N{\log x\over x}\mathrm dx+\mathcal O\left(\log N\over N\right) \\
&=\frac12[\log^2N-\log^2(N/2)]+\mathcal O\left(\log N\over N\right) \\
&=\frac12[\log N+\log(N/2)][\log N-\log(N/2)]+\mathcal O\left(\log N\over N\right) \\
&=\frac12\log2[2\log N-\log2]+\mathcal O\left(\log N\over N\right) \\
&=\log2\log N-\frac12\log^22+\mathcal O\left(\log N\over N\right)
\end{aligned}
$$
Now, employing this obtained identity and the asymptotic formula for harmonic series yields:
$$
\begin{aligned}
\sum_{n\le N}{(-1)^n\log n\over n}
&=\log2(\log N+\gamma)-\log2\log N+\frac12\log^22+\mathcal O\left(\log N\over N\right) \\
&=\gamma\log2+\frac12\log^22+\mathcal O\left(\log N\over N\right)
\end{aligned}
$$
Now, take the limit $N\to\infty$ on both side gives
$$
\sum_{n\ge1}{(-1)^n\log n\over n}=\gamma\log2+\frac12\log^22
$$