it sounds like you'd like a less lazy hint, so here goes:
Fix $\epsilon > 0$, we'll show that the partial sums $\frac{X_1 + \ldots + X_n}{Y_1 + \ldots +Y_n}$ are eventually trapped in $[a-\epsilon, a+ \epsilon]$, which tells us exactly what we want.
Right, for that same $\epsilon$, we know that for $n > N$ we have $$a - \epsilon < \frac{X_n}{Y_n} < a + \epsilon$$so our partial sums are bounded by: $$\frac{(X_1 + \ldots + X_N) + (a-\epsilon)Y_{N+1} + \ldots + (a - \epsilon)Y_n}{Y_1 + \ldots + Y_n} < \frac{X_1 + \ldots + X_n}{Y_1 + \ldots +Y_n} < $$$$\frac{(X_1 + \ldots + X_N) + (a+\epsilon)Y_{N+1} + \ldots + (a + \epsilon)Y_n}{Y_1 + \ldots + Y_n}$$(I just literally stuck in our estimate) Now, the idea is that the left and right hand bounds converge to $a - \epsilon$, $a + \epsilon$ respectively.
I'll just show one of them, $a - \epsilon$. First ``tear off" the first $N$ terms, since $\sum Y_n = \infty$ they'll dissappear in the limit, that is we have: $$\lim_n \frac{(X_1 + \ldots + X_N) + (a-\epsilon)Y_{N+1} + \ldots + (a - \epsilon)Y_n}{Y_1 + \ldots + Y_n} = $$$$\lim_n \frac{X_1 + \ldots + X_N}{Y_1 + \ldots + Y_n} + \lim_n \frac{(a-\epsilon)Y_{N+1} + \ldots + (a - \epsilon)Y_n}{Y_1 + \ldots + Y_n}$$$$0 + \lim_n \frac{(a-\epsilon)Y_{N+1} + \ldots + (a - \epsilon)Y_n}{Y_1 + \ldots + Y_n}$$Right, now to manage this guy, notice that if you forgot about $Y_1 + \ldots + Y_N$ in the denominator, you'd just have $a-\epsilon$, which is what we want, and sure enough: $$\lim_n \frac{(a-\epsilon)Y_{N+1} + \ldots + (a - \epsilon)Y_n}{Y_1 + \ldots + Y_n} = \lim_n \frac{(a - \epsilon)Y_{N+1} + \ldots + (a-\epsilon)Y_n}{Y_{N+1} + \ldots + Y_n} \frac{Y_{N+1} + \ldots + Y_n}{Y_1 + \ldots + Y_n}$$$$ = (a-\epsilon) \lim_n \frac{Y_{N+1} + \ldots + Y_n}{Y_1 + \ldots + Y_n} = (a - \epsilon) \cdot 1$$which is what we wanted.
Comment or something if you have any questions etc. I hope this helps mate :)