For the purpose of proving that they are not regular, what closure properties can I use to transform the languages
- $L_a = \{ a^*cw \mid w \in \{a,b \}^* \land |w|_a = |w|_b \}$ and
- $L_b = \{ab^{i_1}ab^{i_2}\ldots ab^{i_n} \mid i_j∈\mathbb N \land \exists j∈[1,n] \ i_j \not= j \}$
to $L := \{ a^nb^n \mid n\in \mathbb N \}$, respectively?
I tried:
$L_a = \{ a^*cw \mid w \in \{a,b \}^* \land |w|_a = |w|_b \}$
$L_a' = \{ \{a,d\}^*cw \mid w \in \{a,b,d \}^* \land |w|_a + |w|_d = |w|_b \}$ (union?)
$L_a'' = \{ d^*cw \mid w \in \{a,b \}^* \land |w|_a = |w|_b \}$ (concatenation?)
$L_a''' = \{ w \mid w \in \{a,b \}^* \land |w|_a = |w|_b \}$ (homomorphism?)
$L_b = \{ab^{i_1}ab^{i_2}\ldots ab^{i_n} \mid i_j∈\mathbb N \land\exists j∈[1,n] \ i_j \not= j \}$
$L_b' = \{ab^{i_1}ab^{i_2}\ldots ab^{i_n} \mid i_j∈\mathbb N \land\forall j∈[1,n] \ i_j = j \}$ (complement?)
$L_b'' = \{ac^{i_1}ac^{i_2}\ldots ac^{i_n} \mid i_j∈\mathbb N \land\forall j∈[1,n] \ i_j = j \}$ (homomorphism?)