We say $f(n)=\theta(g(n))$ if
$$
cg(n)\leq f(n)\leq Cf(n),\quad 0<c\leq C<\infty
$$
as $n\rightarrow \infty.$
Apply the $\ell-$bit hash function to $k$ randomly chosen inputs. Let $n=2^{\ell}.$
The chance of two values picked being unique is $n- 1 \over n$ because when picking the second value you only have $n-1$ unique values left in the range. Repeating this argument,
the chance of picking $t$ unique values is:
$${n - 1 \over n} \times {n- 2 \over n} \times \cdots \times {n- (k- 1) \over n}.$$
This is exactly the same as the limit for the birthday paradox.
Now $1-x \leq e^{-x}$ and hence
$1-(v/n) \leq e^{-v/n}$ for $1\leq v\leq n,$ and thus the probability of no collisions is at most
$$e^{-{1 \over n}} \times e^{-{2 \over n}} \times \cdots \times e^{-{k - 1 \over n}} =\exp\left\{-{1 + 2 + \cdots + (k-1) \over n}\right\}$$
which equals
$$e^{-{k(k-1)/2 \over t}} = e^{-{k(k-1) \over 2n}} $$
The chance of a collision is 1 minus this quantity. Plugging in $k=\sqrt{n}=\sqrt{2^{\ell}}$ yields a value not too far from $1/2.$